A study of cloud processing of organic aerosols using models and CHAPS data

Project start: 2008

Principal Investigator **Barbara Ervens**CIRES, University of Colorado, Boulder, CO

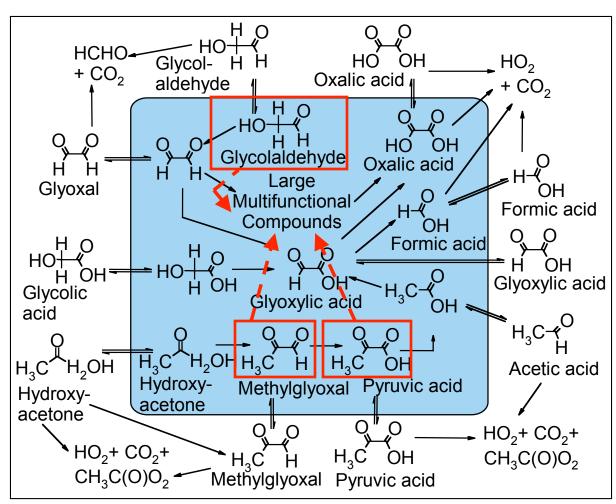
Co-Principal Investigator
Graham Feingold
NOAA, Earth System Research Laboratory
Chemical Sciences Division, Boulder, CO

Motivation

- Current aerosol model significantly underpredict secondary organic aerosol (SOA) mass
- Recent findings (model, lab, field) suggest that chemical processes in cloud droplets might lead to organic mass that remains in the particle upon cloud evaporation
- The efficiency of this SOA formation pathway has not been quantified yet

1. Mechanism development

- Lab experiments: aqueous phase reactions of organic species (carbonyls, acids)


 Collaboration with B. Turpin (Rutgers University)
- Derivation of chemical mechanism (rate constants, species) by fitting of measured concentration profiles *Carlton et al., 2007, Altieri et al., 2008*

Extension of the current mechanism:

Detailed reaction scheme for

- methylglyoxal
- pyruvic acid
- glycolaldehyde

Interactions of organics with other compounds (e.g., sulfate)

2. Model application: CHAPS data

• Cloud parcel model with organic and inorganic multiphase (gas, aqueous) chemistry Feingold et al., 1998, 2000; Ervens et al., 2004, 2008

Trajectories of suitable CHAPS cases will be derived by LES model

(PNNL): Drivers for parcel model

Model initialization:

- Meteorological data
- Gas phase VOC
- Aerosol size distribution and composition

Closure studies:

Comparison of observed and predicted properties of initial vs. cloudprocessed aerosol

-Sulfate mass, (speciated) organic mass in cloud residuals

-Optical properties

-CCN properties

mass (size) and composition modification

Collaboration with J. Ogren, NOAA

Chemical

processes

in cloud

3. Parameterization of SOA_{drop} formation

 Parameterization of SOA_{drop} yields, in a similar way as it has been done for SOA from isoprene in stratocumulus clouds

$$Y(SOA_{drop}) = \frac{\Delta \text{ (mass SOA}_{drop})}{\Delta \text{(mass precursor VOC)}} = f(cloud parameters [LWC, \tau], NO_x)$$

Only small dependence on pH, air/water interface, partitioning ratio

Ervens et al., Geophys. Res. Lett., 2008

- Refinements of model input/parameterizations
 - *chemical* processes: e.g.,less dilute particles, SOA precursors, new lab results, ...
 - meteorological parameters: Is in-cloud aerosol connected with below/above cloud aerosol? (⇒ transport, mixing)